Semi-Supervised Classification Based on Low Rank Representation
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Classification Based on Low Rank Representation
Graph-based semi-supervised classification uses a graph to capture the relationship between samples and exploits label propagation techniques on the graph to predict the labels of unlabeled samples. However, it is difficult to construct a graph that faithfully describes the relationship between high-dimensional samples. Recently, low-rank representation has been introduced to construct a graph,...
متن کاملStructure Preserving Low-Rank Representation for Semi-supervised Face Recognition
Constructing an informative and discriminative graph plays an important role in the graph based semi-supervised learning methods. Among these graph construction methods, low-rank representation based graph, which calculates the edge weights of both labeled and unlabeled samples as the low-rank representation (LRR) coefficients, has shown excellent performance in semi-supervised learning. In thi...
متن کاملLow rank representation with adaptive distance penalty for semi-supervised subspace classification
The graph based Semi-supervised Subspace Learning (SSL) methods treat both labeled and unlabeled data as nodes in a graph, and then instantiate edges among these nodes by weighting the affinity between the corresponding pairs of samples. Constructing a good graph to discover the intrinsic structures of the data is critical for these SSL tasks such as subspace clustering and classification. The ...
متن کاملSparse semi-supervised learning on low-rank kernel
Advances of modern science and engineering lead to unprecedented amount of data for information processing. Of particular interest is the semi-supervised learning, where very few training samples are available among large volumes of unlabeled data. Graph-based algorithms using Laplacian regularization have achieved state-of-the-art performance, but can induce huge memory and computational costs...
متن کاملSemi-Supervised Classification Based on Mixture Graph
Graph-based semi-supervised classification heavily depends on a well-structured graph. In this paper, we investigate a mixture graph and propose a method called semi-supervised classification based on mixture graph (SSCMG). SSCMG first constructs multiple k nearest neighborhood (kNN) graphs in different random subspaces of the samples. Then, it combines these graphs into a mixture graph and inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2016
ISSN: 1999-4893
DOI: 10.3390/a9030048