Semi-Supervised Classification Based on Low Rank Representation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Classification Based on Low Rank Representation

Graph-based semi-supervised classification uses a graph to capture the relationship between samples and exploits label propagation techniques on the graph to predict the labels of unlabeled samples. However, it is difficult to construct a graph that faithfully describes the relationship between high-dimensional samples. Recently, low-rank representation has been introduced to construct a graph,...

متن کامل

Structure Preserving Low-Rank Representation for Semi-supervised Face Recognition

Constructing an informative and discriminative graph plays an important role in the graph based semi-supervised learning methods. Among these graph construction methods, low-rank representation based graph, which calculates the edge weights of both labeled and unlabeled samples as the low-rank representation (LRR) coefficients, has shown excellent performance in semi-supervised learning. In thi...

متن کامل

Low rank representation with adaptive distance penalty for semi-supervised subspace classification

The graph based Semi-supervised Subspace Learning (SSL) methods treat both labeled and unlabeled data as nodes in a graph, and then instantiate edges among these nodes by weighting the affinity between the corresponding pairs of samples. Constructing a good graph to discover the intrinsic structures of the data is critical for these SSL tasks such as subspace clustering and classification. The ...

متن کامل

Sparse semi-supervised learning on low-rank kernel

Advances of modern science and engineering lead to unprecedented amount of data for information processing. Of particular interest is the semi-supervised learning, where very few training samples are available among large volumes of unlabeled data. Graph-based algorithms using Laplacian regularization have achieved state-of-the-art performance, but can induce huge memory and computational costs...

متن کامل

Semi-Supervised Classification Based on Mixture Graph

Graph-based semi-supervised classification heavily depends on a well-structured graph. In this paper, we investigate a mixture graph and propose a method called semi-supervised classification based on mixture graph (SSCMG). SSCMG first constructs multiple k nearest neighborhood (kNN) graphs in different random subspaces of the samples. Then, it combines these graphs into a mixture graph and inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2016

ISSN: 1999-4893

DOI: 10.3390/a9030048